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The anisotropic thermal parameters of the atoms in crystalline hexamethylenetetramine (HMT), which 
were determined from the neutron-diffraction study of Duckworth, Willis & Pawley [Acta Cryst. 
(1970). A26, 263-271], are shown to be in close agreement with those calculated independently from 
lattice-dynamical and spectroscopic data. Although HMT is probably the only molecular crystal for 
which there is sufficient information for such a comparison to be made, this result may give comfort 
to those crystallographers who wonder whether their thermal parameters really mean anything. Tests 
are also made of various procedures for modifying the rigid-body model of thermal motion (as applied to 
the structure refinement of HMT) to take into account the internal modes of vibration. 

1. Introduction 

The results of a crystal-structure determination are 
often presented as a list of atomic coordinates for each 
atom in the asymmetric unit of the unit-cell, together 
with a corresponding list of anisotropic temperature- 
factor coefficients. Although a crystallographer may be 
confident of the essential correctness of his positional 
parameters, he is usually much less certain about his 
thermal parameters. This uncertainty has been de- 
scribed in the following way by Zachariasen (1969): 
' . . .  Looking at the many structures which have been 
published in Acta Crystallographica during the last few 
years, it is evident that the positional parameters are 
reasonably good . . .  [but that] the thermal parameters 
are all nonsense and must all be done again in a sen- 
sible way'. 

It is the purpose of this paper to show that the situa- 
tion in crystallograpb) may not be quite as gloomy as 
that depicted by Zachariasen. We show that the aniso- 
tropic thermal parameters of hexamethylenetetramine 
(HMT), as derived from neutron diffraction measure- 
ments, are in very close agreement with those cal- 
culated entirely independently from lattice-dynamical 
and spectroscopic data. At the present time, HMT is 
probably the only molecular crystal for which there is 
sufficient information (in the form of diffraction, lat- 
tice-dynamical and spectroscopic measurements) for 
such a comparison to be made. 

2. Modes of vibration of an HMT crystal 

The HMT molecule has 43m point symmetry [see Fig, 
l(a)] and crystallizes in the cubic space group 143m. 
Each molecule in the crystal is surrounded by eight 

* Nde Duckworth. 

others, which are in identical orientations and lie along 
the eight (111 ) directions. Thus the body-centred unit- 
cell, Fig. l(b), is equivalent to that of a b.c.c, metal 
such as sodium, with each sodium atom replaced by 
a single molecule of HMT. The carbon atoms are in 
positions 12(e): (u',0,0) with u'_~0.24; the nitrogen 
atoms in positions 8(c): (v, v, v) with v_~ 0.12; and the 
hydrogen atoms in positions 24(g): (x,x,z) with x _  ~ 
0-09 and z _ - 0 - 3 3 .  

Now the thermal motion of the atoms in a crystal 
composed of N primitive unit cells, each containing n 
atoms, can be described in terms of 3nN independent 
modes of vibration. Corresponding to any of the N 
distinct wave vectors q in the first Brillouin zone, there 
are 3n modes of (circular) frequency coj(q),j= 1 ,2 . . .  3n. 
For large N, coj(q) is practically a continuous function 
of q, and a plot of coj(q) versus q gives the so-called 
phonon dispersion relations for the direction in recip- 
rocal space defined by q. In general, there are 3n 
branches of the dispersion relations (with the index j 
labelling an individual branch), but along symmetry 
directions degeneracies can occur and so the number 
of branches may be less than 3n. For HMT, the primi- 
tive unit-cell contains one molecule of composition 
C6Hx2N4, so that n is equal to 22 and there are 3 x 22-- 
66 branches of the dispersion relations for general direc- 
tions of q. 

The description of the nature of the thermal vibra- 
tions of HMT is simplified by recalling that the inter- 
action forces between different molecules in the crystal 
are much weaker than the forces between atoms within 
a single molecule. This allows the normal modes of 
vibration to be divided into internal and external vi- 
brations. For the internal vibrations, the atoms of the 
molecule move relative to one another without shift- 
ing the centre of gravity of the molecule or causing the 
molecule to rotate as a whole. The frequencies of these 
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internal modes are much higher than the external-mode 
frequencies and are practically independent of the wave 
vector q. For the external vibrations, each molecule 
undergoes a rotational and translational motion which 
is correlated with the motions of the other molecules 
and gives rise to a q dependence of the frequencies. 
The number of external branches is 6n', where n' is the 
number of molecules in the primitive unit-cell: n ' =  1 
for HMT so that there are only six branches for a gen- 
eral direction of q and even fewer (see Fig. 2) along 
symmetry directions, q-he wide separation in Fig. 2 
between the frequencies of the external and internal 
modes implies that we are justified in treating the vibra- 
tions of the HMT crystal in terms of external modes 
involving rigid-body oscillations of the molecule and 
of internal modes which are essentially the same as for 
the free molecule. 
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Fig. 1. (a) Molecular structure of HMT. The six carbon atoms 
lie along the positive and negative directions of the Cartesian 
axes x,y,z. (b) Cubic unit cell of HMT, with octahedral 
blocks representing the individual molecules shown in (a). 
(After Cochran & Pawley, 1964). 
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Fig. 2. HMT: dispersionless, high-frequency internal modes 
and dispersive, low-frequency external modes. (Note the 
change of scale on the frequency axis.) 

Our principal task is to compute (from the known 
dynamical properties of HMT) the anisotropic tempera- 
ture parameters flr~ appearing in the temperature-factor 
expression 

exp - (flllh 2 + fl22 k 2  -1- fin312 + 2fl12hk 
+ 2p13m + 2/%3kl) (1) 

for each atom x in the unit-cell, and to compare these 
with the observed values derived from diffraction meas- 
urements. The parameters flr~ are related to the atomic 
displacements by the expression 

a°2 B 
U,s= ~ ~.,s, (2) 

where a0 is the cubic lattice parameter and U,~ is the 
mean value of the atomic displacement along the Car- 
tesian r axis multiplied by the displacement along the 
Cartesian s axis. U,~ may be subdivided into separate 
contributions arising from the external and internal 
modes of motion 

Urs = T/ext-~-- H i n t  ,s., - , ,  • (3) 

We shall discuss the calculation of the anisotropic 
mean-square external displacements U~ t in § 3, and 
the calculation of the anisotropic mean-square inter- 
nal displacements Ut~ t in § 4. 

3. E x t e r n a l  a t o m i c  mean- square  d i sp lacements  

The mean-square displacements due to the external 
modes of motion may be described in terms of three 
second-rank tensors T, L and S (Schomaker & True- 
blood, 1968). Because the centre of the HMT molecule 
occupies a site in the crystal of 43m symmetry, the 
rigid-body translational tensor T reduces to a scalar 
quantity (u2), the librational tensor L reduces to a 
scalar quantity (02), and the translational-librational 
tensor S vanishes. (u 2) is the mean-square translational 
displacement of the rigid molecule in any direction, 
and (0 z) is its mean-square librational displacement 
about any axis passing through the molecular centre. 
Explicit expressions for the individual atomic displace- 
ments U~ t in terms of (u 2) and (02) are derived by 
Duckworth, Willis & Pawley (1970) (DWP) and are 
reproduced in Table 1. We shall calculate the quan- 
tities (u2) and (02) and then substitute these into the 
expressions in Table 1 to obtain the external displace- 
ments at a given temperature. 

Now the mean-square translational displacement, 
arising from all the 6N external modes of vibration, is 
given by the expression (Cochran & Pawley, 1964) 

21E(og)og-Zgr(og)do9 
(u 2) . . . . . . .  (4) 

m I g(og)do9 

Here E(o9) is the average energy of a mode of frequency 
o9, rn is the mass of the molecule, and g(og)do9 is the 

A C 31A - 8* 
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e x t  Table 1. Tensor components Urs for  H M T  expressed in 
terms o f  the scalar quantities (u 2) and (0 2) 

(1) Carbon atom at @',0,0) 
U~It= (u z) + u'2a~(022) z 
U ~_It = (u 2) + u,2a2(0:2) _ , ,  .,,:2~:2/a22\, -V~-t~ t * O \ U  / 

__ u e x t  
- -  33 

u e x t _ _  r r e x t _  u e x t _ _ 0  
12 - t J  13 - :23 - • 

(2) Nitrogen atom at (v, v, v) 
U~It= (u 22) + 2v2a2o(0:2) -~.v:2a~(O2) :2 

__ T / ' e x t  u e x t  
- -  ~-/22 ~ 33 

U e x t ~  2 2 2 2 9  2 2 2 2 12 -- --v ao(O )+-f-~v ao(O ) 
__ / ' T e x t  / T e x t  
- -  ' J 1 3  ~ ~ J 2 3  • 

(3) Hydrogen atom at (x,x,z) 
- - - *  . . - - -  - -  . - , . - . u e x t = ( u : 2 3 q - ( X : 2 " 4 - Z 2 2 ) a Z [ ( 0 2 2 3 - - 1 7 T - £ (  02 ) 2...]_ X:2 (0  2, ) 2,1 

l / e x t  
- -  ~- /22 

u e x t _ _  2 2 2 2 1 7  2 2 2 2 2 33 - ( u  ) +  2x ao[(O )--c-~(O ) + z ( 0 )  l 
f / c x t _ _  2 2 2 9  2 2 

12 - -  - -  x2ao[( 0 ) -- "-~--~(0 ) l 
u e x t _ _  :2 :2 2 9  2 2 

t3 -- -- xzao[(O ) -- -f-~(O ) l 
_ _  /'Text 
~ v 2 3  . 

number of modes in the frequency interval co, co + do). 
The corresponding expression for the mean-square libra- 
tional displacement is 

2 1 E(co)co-zgL(co)d°) 
(02)= ~ (5) 

mk 2 I g (co)dco 

with k the radius of gyration of the molecule. The 
meanings of gr  and gL in (4) and (5) are discussed in 
the next paragraph. The average energy E(co) is related 
to the frequency and the temperature T by 

ha) 
E(oo)=½hco+ [exp (hco /kzT) -  11" (6) 

In the classical (high-temperature) limit, E(co) is simply 
k~T. h is Planck's constant --2zc. 

The function gr(cO) ir~ equation (4) represents the 
contribution of translational motion to the frequency 
distribution function g(co), and g,(oo) in equation (5) 
represents the librational contribution: 

g(co) =gr(co) + gL(CO). (7) 

Although modes propagating along symmetry direc- 
tions may be predominantly translational ol librational 
in character, each external mode will involve, in gen- 
eral, both translations and librations of the molecule 
and so will contribute to both gr  and g,, To determine 
gT(CO) and gL(CO) we must know the eigenvector e(jq) 
of each mode (jq) as well as its frequency co. The eigen- 
vector determines the pattern of the molecular dis- 
placements for a given mode: it has six components 
e, ( i= 1 , 2 . . .  6) of which the first three refer to dis- 
placements arising from translations of the rigid mol- 
ecule along the principal cubic axes, and the last three 
to displacements from librations about these axes. We 
can say that a fraction 

3 6 

e~'e,+ ~ e,*e, 
i = 1  i = 1  

of a mode contributes to gT, and a fraction 
6 6 

~ e T e i + ~ e T e i  
i = 4  i = 1  

to gr. If the eigenvectors are normalized, so that 

6 

e~'e~ = 1, 
l = 1  

then 

and 

3 

gT(~)= ~ ~ e~(Jq)e,(jq) (8a) 
d q  / = 1  

6 

gL(CO)= ~ ~ e*(jq)ei( jq) .  (8b) 
J q  i = 4  

The first summation on the right-hand side of (8a) and 
(8b) refers to those modes (jq) lying in the frequency 
interval co, co+doo; the index j labels the six branches 
of the dispersion relations. 

The frequencies and corresponding eigenvectors of 
the six external modes with a given wave vector q may 
be derived by applying the Born-yon K~irm~in theory 
in the form appropriate to molecular crystals (see, for 
example, Venkataraman & Sahni, 1970). The main 
steps in this procedure consist of setting up an ap  
propriate force field to describe the interactions be- 
tween different molecules and then assembling the 
6 x 6 'dynamical matrix' D(q), which is diagonalized to 
yield the six eigenvalues o9~(q) and six eigenvectors 
e(jq). The calculation is carried out over a mesh of q 
points in the Brillouin zone and interpolation is used 
to cover points within the mesh. 

Dr G. Dolling (private communication, 1973) has 
kindly carried through this procedure for us on HMT, 
with the aid of a computer program based on the 
five-parameter force-constant model of Dolling & 
Powell (1970). This model was originally derived from 
the analysis of experimental dispersion relations at 
298K for deuterated hexamine, Fig. 3, but the same 
model may be applied to HMT as the intermolecular 
forces are unlikely to change on substituting hydrogen 
for deuterium. Dolling calculated gr(o9) and gL(co) 
from equations (8a, b) at intervals of 0.001 THz in 
frequency v(= co/2rc) for the frequency range 0 < v < 2-5 
THz. 

We have used Dolling's tabulation of gT, gL and g 
( = g r + g L )  to derive (u 2) and (0 2) by means of nu- 
merical integration of the quantities on the right-hand 
side of equations (4) and (5). Our results are 

(u2) = 0"0244 A 2  t 

(02) = 44.4 degrees 2 at 298 K ,  

with a calculated precision for both estimates of less 
than one unit in the last decimal place. 

Inserting these estimates into the expressions for 
Ue~t in Table 1 together with the DWP positional par- r s  

ameters (u' = 0.239 for carbon; v = 0.124 for nitrogen; 
x =  0.092, z =  -0 .328  for hydrogen) and the room-tem- 
perature lattice constant (a0=7.019 A), yields the re- 
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suits listed in Tables 2 to 4 in the columns 'external- 
mode contribution' .  Note that rrext for carbon is zero; ~'23 

this is a consequence of  the rigid-body assumption 
and is not a requirement imposed by the site symmetry 
of the atom. On the other hand,  rrext and rrext for the v 1 2  v 1 3  

same atom are zero by symmetry and so are not listed 
separately in Table 2. 

Table 2. Anisotropic mean-square displacement of  carbon 
atom at (u', O, O) 

Calculated (,&2) Observed (/~2) 
External- Internal- Total 

mode mode 
contribu- contribu- 

tion tion 
Uu 0.0249 0.0016 0 . 0 2 6 5  0.0262 (13) 
U22 0.0617 0.0017 0.0634 0.0652 (15) 
U23 zero -- 0.0001 - 0.0001 0.0005 (24) 

Site symmetry is mm, which gives the symmetry restrictions: 
U22 = Us3; U12 = U13 = 0. 

Coordinate system as in Fig. 1. 

Table 3. An•otropic mean-square displacement of  nitro- 
gen atom at (v, v, v) 

Calculated (~2) Observed (,&2) 
External- Internal- Total 

mode mode 
contribution contribution 

U11 0 " 0 4 4 6  0 . 0 0 1 3  0 " 0 4 5 9  0"0485 (7) 
U12 --0"0099 --0"0001 --0"0100 --0"0101 (8) 

Site symmetry is 3m, which gives the symmetry restrictions: 
U l l  = U22 = U33; UI2 = U13 = U23 • 

Table 4. Anisotropic mean-square displacement of  hydro- 
gen atom at (x ,x ,z)  

Calculated (A 2) Observed (/1,2) 
External- Internal- Total 

mode mode 
contribution contribution 

Un 0 " 1 0 0 2  0 " 0 1 3 5  0.1137 0"1106 (33) 
U33 0 . 0 3 5 5  0 . 0 1 6 8  0 . 0 5 2 3  0"0513 (26) 
U12 -0"0055 0"0003 -0"0052 -0"0055 (38) 
U13 0 " 0 1 9 4  0 " 0 0 5 8  0 " 0 2 5 2  0"0235 (20) 

Site symmetry is m, which gives the symmetry restrictions: 
Ult = U22; Ul3 = U23 • 

4. Internal atomic mean-square displacements 

The contr ibut ion of the internal modes to the mean- 
square atomic displacements is calculated by carrying 
out a normal-coordinate  analysis for the molecular vi- 
brations of HMT.  The FG matrix method of  Wilson 
may be used (see Wilson, Decius & Cross, 1955), in 
which the elements of  the F matrix are the intramo- 
lecular force constants and the elements of  the G ma- 
trix are related to the known atomic masses and atomic 
coordinates. A suitable force field is obtained by fitting 
the observed optical frequencies to those calculated 
from the equation 

F G - E 2 = O ,  (9) 

where E is the unit matrix and 2 is an eigenvalue related 
to the frequency v by 

2 =4n2c2v 2 . 

Equat ion (9) has 60 non-zero eigenvalues, corresponding 
to the 60 internal modes of  vibrat ion of HMT.  [Max- 
imum factorization of  equation (9) is achieved by ap- 
plying group-theoretical methods, which exploit the 
symmetry properties of  the molecule.] The eigenvector 
associated with a given eigenvalue determines the 
atomic displacements for that part icular mode of vibra- 
tion, and by adding the appropriate components  of  
the eigenvectors for all 60 modes the quantities U~  t 
in equation (3) may be derived. 

This calculation was first carried out for H M T  by 
Becka & Cruickshank (1963). These authors treated 
the CH 2 groups as rigid units and used the optical 
frequencies observed by Couture-Mathieu,  Mathieu,  
Cremer & Poulet (1951) to obtain three force con- 
stants: one each for C - N  stretching, C - N - C  bending 
and N - C - N  bending. The Becka & Cruickshank treat- 
ment  was limited to a determinat ion of the tensor com- 
ponents U ~  t of  the carbon and nitrogen atoms only. 

More recently, Elvebredd & Cyvin (1973) have cal- 
culated the tensor components  for all three atoms, by 
removing the restriction that the CH2 groups are rigid 
and by employing both R a m a n  and infrared frequencies 

~ / 2  rr 

(THz) 

[~,0,0]-" 
2 ,T.3 - 

~X5  . 

1 

~ 5  

0 
0 0'4 0'8 1 '0 0'8 0"6 0'4 0'2 0"0 0"2 0"4 ~" 

Fig. 3. Dispersion relations for deuterated HMT at 298 K, as measured along the symmetry directions [100], [111] and [110]. 
The solid curves are a best least-squares fit based on a five-parameter force-constant model. The branches labelled z/~, A1, Z:~ 
are purely translational, while zls, A3 and -r3 are mixed branches with modes having both translational and librational character. 
(After Dolling & Powell, 1970). 
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(Cheutin & Mathieu, 1956) to obtain the additional 
force constants involving hydrogen. However, Thomas 
(1975) has shown that there are several discrepancies 
between the normal-coordinate analysis of Elvebredd 
& Cyvin and the observed incoherent inelastic neutron 
spectrum of HMT. These discrepancies may be re- 
moved, without impairing the match between cal- 
culated and observed optical frequencies, by re-as- 
signing one of the triply-degenerate 7'1 modes of vibra- 
tion. Thomas has repeated the Elvebredd & Cyvin an- 
alysis using this new assignment, and has derived new 
tensor components v,sflint which, in fact, turn out to be 
very similar to those calculated by Elvebredd & Cyvil~. 
In Tables 2, 3 and 4 we quote only, under 'internal 
mode contribution', the values calculated by Thomas. 

5. Comparison with experiment 

The 'observed' displacements in the last column of 
Table 2 were derived by Duckworth, Willis & Pawley 
(1970) from the analysis of their room-temperature 
neutron-diffraction measurements. Estimates were 
made of 49 structure amplitudes, in which each esti- 
mate represented an average over about 12 symmetry- 
related reflexions. The nine symmetry-independent 
Urs's, together with their e.s.d.'s, were then obtained 
by means of an unconstrained refinement based on 
equations (1) and (2). (Third and high-order cumulants 
were set to zero, although DWP showed that the inclu- 
sion of third-order cumulants does lead to a small but 
significant improvement in the refinement.) 

If the last two columns of Tables 2 to 4 are com- 
pared, the 'calculated' and 'observed' tensor compo- 
nents are in agreement, within a few standard devia- 
tions, for all three types of atom. This is particularly 
encouraging in view of the high precision in the meas- 
urement of the original Bragg intensities, which im- 
plies a corresponding precision in the measured esti- 
mates of the Urs's. Thus the magnitude and orientation 
of the ellipsoids of thermal vibration, as deduced from 
the refinement of diffraction data on HMT, are close 
to those calculated entirely independently from lat- 
tice-dynamical and spectroscopic measurements. 

6. Constrained refinements 

In Tables 2 to 4 the observed displacements refer to 
the unconstrained refinement of the diffraction data of 
Duckworth, Willis & Pawley. In this section we shall 
describe some results obtained by carrying out refine- 
ments in which the thermal parameters of carbon, 
nitrogen and hydrogen are constrained in various ways. 
These results are summarized in Table 5. 

In model 1 the thermal parameters describing the 
external motion are fixed at the lattice-dynamical val- 
ues calculated in § 3, and the parameters describing 
the internal motion are fixed at the values calculated 
in § 4 from Thomas's normal-coordinate analysis. There 
are no variable thermal parameters. The quoted R val- 

ues correspond to a second-cumulants refinement em- 
ploying five variable parameters: four for the atomic 
positions and one for the overall scale factor. (For the 
remaining models the same five variable parameters 
were employed in each refinement.) 

Model 2 is the same as model 1 with respect to the 
external motion but ignores the contribution from in- 
ternal motion. 

In model 3 the parameters for the external motion 
are fixed once more at the values calculated in § 3, 
but five variable thermal parameters are allocated for 
the internal motion. Three of these variable parameters 
represent the internal mean-square anisotropic dis- 
placements of the hydrogen atom. A fourth parameter 
represents the mean-square isotropic displacement of 
the carbon atom due to internal motion, and the fifth 
describes the internal mean-square isotropic displace- 
ment of the nitrogen atom. 

Model 4 is the traditional TLS rigid-body model, 
which employs (two) variable parameters for the ex- 
ternal motion and ignores the internal motion. 

In model 5 the external motion is treated as in model 
4, and the internal motion is allowed for using the for- 
mula (Scheringer, 1972): 

V = 1 ( f l i n t  /-Tint i lint'~ __ 
3k'-~ 11 + v 2 2  -~- ~-~33 1~ 

( n - 2 ) a  
m ~  

(10) 

Here U~ is the isotropic mean-square displacement of 
atom e and m~ is its mass number; n is the number of 
atoms in the molecule (=22  for HMT); and a is a 
fixed constant = 0.0015 mole A 2. 

Model 6 is the same as model 5 except that the 
quantity a in equation (10) is treated as a variable 
parameter. 

Comparing the R values, listed in the last two col- 
umns of Table 5, of the constrained models (1-6) and 
of the unconstrained model (7), we can draw the fol- 
lowing conclusions. All these conclusions have been 
confirmed by applying the Hamilton (1965) tests to the 
R-value ratios. 

(1) The unconstrained model possesses too many 
thermal parameters (it has the same R value as model 3 
but has more thermal parameters), whereas the strictly 
rigid-body models (2 and 4) possess too few. The rigid- 
body models must be modified to allow for the effect 
of internal motion. The most satisfactory way of doing 
this (model 3) is to allocate five parameters for the in- 
ternal motion, one each for the isotropic motion of 
carbon and nitrogen and three for the anisotropic mo- 
tion of hydrogen. 

(2) The rigid-body model 4, with variable rigid-body 
parameters (u 2) and (02), yields a better refinement 
than the rigid-body model 2, with rigid-body param- 
eters fixed at the lattice-dynamical values. This is be- 
cause model 4 allows implicitly for some degree of in- 
ternal motion by over-estimating both (u 2) and (02). 

(3) The contribution of the internal modes to the 
total mean-square atomic displacements is least for 
carbon and nitrogen and greatest for hydrogen. This 
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implies tha t  the neglect  o f  in te rna l  m o t i o n  will give 
rise to special difficulties in ref ining neutron-di f f rac-  
t ion  measurements .  

(4) C o m p a r i s o n  of  models  1 and  3 indicates  tha t  the 
in terna l  d i sp lacements  deduced f rom diffract ion meas- 

u rements  (model  3) differ s l ightly f rom those  given by 
a no rma l - coo rd ina t e  analys is  of  spectroscopic  measure-  
ments  (model  1). On  the o ther  hand ,  the the rmal  and  
pos i t iona l  pa ramete r s  for  model  3 are in exact agree- 
men t  wi th  those  for  the uncons t r a ined  model  (7). 

Model 
1 (Fixed 
external and 
internal 
parameters) 

2 (Fixed 
external 
parameters: no 
internal motion) 

3 (Fixed 
external 
parameters : 
variable internal 
parameters) 

Table  5. Constrained refinements qf diffraction data of D WP 

External-motion 
parameters 

(//2) (0 2 ) 
(•2) (deg2) 

0.0244 44.4 

Internal-motion 
parameters 

ulnt 
(A 7) 

U11( = U22 ~-~ U33) 
= 0.002 for carbon; 
U~,(= U22 = U33)= 
0.001 for nitrogen; 
U11(= U22) =0"014, 
U33=0.017, 
U13 ( = U23 ) = 0"006 
for hydrogen. 

Number of Number 
indepen- of 

dent variable 
thermal thermal R R~ 
param- param- (%) (%) 
eters eters 

7 0 3.06 3-45 

0.0244 44.4 Zero 2 0 4.96 5-14 

0.0244 44.4 Ult( = U22 = U33)= 7 5 2.23 2.49 
0.002 (1) for carbon; 
UII(=  U22 = U33)= 
0.004 (1) for nitrogen; 
UtI(~-~- U22) = 0.009 (2) 
U33 ~-- 0-015 (2), 
U~3 = 0.004 (2) for 
hydrogen. 

4 (Variable 0.0267 46.8 Zero 2 2 3.35 3.79 
external (10) (1.9) 
parameters: 
no internal 
motion) 

5 (Variable 0.0262 41"6 Ul1(= U22= U3a)= 3 2 4"32 5"48 
external (14) (2.6) 0.0025 for carbon 
parameters: U~I(= U22 = U33) = 
Scheringer 0.0021 for nitrogen ; 
treatment UH(= U22 = U33)= 
of internal 0.0300 for hydrogen 
motion) 

6 (Variable 0.0264 45.1 U11(= U22 = U33)= 
external (9) (1.5) 0.0008 for carbon 
parameters: Ul1(= 0"22 = U33)= 
modified 0.0007 for nitrogen; 
Scheringer Uxl(= U22 = Us3)= 
treatment 0.0095 (25) for 
of internal hydrogen. 
motion) 

3 3 2.47 2.72 

7 (No thermal - -  - -  - -  9 9 2.23 2"48 
constraints) 

Notes: (i) Those tensor components U~ t which are not listed in the fourth column are all zero. 
(ii) R~, in the last column is defined by: 

• 

The weights wi are given by the quantities 1/a 2 from the last column of Table 1 in the paper by DWP, and Fl obs is 
given by Fobs in the same table. 

(iii) In models 1, 2 and 3 the external-mode parameters are fixed at the values calculated from lattice dynamics; in models 
4 to 7 they are treated as variable parameters. 
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(5) The Scheringer model (5) for the internal motion 
gives an even poorer refinement than one in which 
there is no explicit internal mode correction at all 
(model 4). In model 6 the quantity a in Scheringer's 
formula (10) is refined from an initial value of 0-0015 
mole A 2 to 0.0005 mole A 2, and the corresponding re- 
finement now represents a considerable improvement 
on model 4. 

7. Conclusions 

We have shown that the anisotropic components of the 
temperature factors of the atoms in crystalline hexa- 
methylenetetramine, as determined from an uncon- 
strained refinement of the neutron-diffraction measure- 
ments of Duckworth, Willis & Pawley (1970), are in 
close agreement with those calculated independently 
from lattice-dynamical and spectroscopic data. 

Constrained refinements of the DWP structure fac. 
tors illustrate the need to extend the TLS rigid-body 
model to take into account the effect of internal mo- 
lecular motion. The TLS model implicitly allows for 
some degree of internal motion, but this allowance is 
insufficient, especially for the hydrogen atoms. How- 
ever, internal motion parameters derived from formula 
(10), proposed by Scheringer (1972), lead to a gross 
overestimate of the internal motion. A modified Sche- 
ringer approach, employing a single variable param- 
eter for the internal motion, proves to be somewhat 
more satisfactory. 

We are deeply indebted to Professor D. W. J. 
Cruickshank who first suggested that the rigid-body 

analysis for HMT should be extended to include the 
influence of internal motion, to Dr G. Dolling who 
supplied the eigenvector and eigenfrequency data 
needed for calculating the external-mode displace- 
ments, and to Dr M. W. Thomas who helped us sub- 
stantially in the calculations of § 3. 
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